Developing a Data Format and Repository for Sharing First-principles Defect Calculations
What can we learn from defect calculations?

- We can learn about the defect chemistry, which is important in applications such as: thermoelectric, photovoltaic, etc.
- First-principles defect calculations are now mature, are routinely done and provides useful insights

npj Computational Materials

First-principles calculation of intrinsic defect chemistry and self-doping in PbTe
Anuj Goyal1,2, Prashun Gorai1,2, Eric S. Toberer1,2 and Vladan Stevanović1,2

Chemistry of Materials

Thermoelectric Performance and Defect Chemistry in n-Type Zintl KGaSb$_4$
Brenden R. Ortiza, Prashun Goraib, Vladan Stevanović1,4 and Eric S. Toberera,†

Chemistry of Materials

Searching for “Defect-Tolerant” Photovoltaic Materials: Combined Theoretical and Experimental Screening
Riley E. Brandta,†, Jeremy R. Poindextera, Prashun Goraib,†, Rachel C. Kurchina, Robert L. Z. Hoyea,‡, Lea Nienhausa, Mark W. B. Wilsona,‡, J. Alexander Polizzottia, Raimundas Žaltauskasa, Lan C. Leea,‡, Judith L. MacManus-Driscolla, Moungi Bawendia, Vladan Stevanovića,‡ and Tonio Buonassisi

ELSEVIER

A computational framework for automation of point defect calculations
Anuj Goyala,†, Prashun Goraia,‡, Haowei Penga, Stephan Lanya, Vladan Stevanovića,‡

Editor's Choice

Published: December 30, 2016

© 2016 Author(s). Published by Elsevier B.V.

Read more at www.sciencedirect.com/locate/commatsci
Why do we need a defect data format and repository?

- The problem is two fold:
 - No standard data format for sharing defect energetics, requires cumbersome plot digitization to grab data
 - Partly due to the lack of a shareable data format, a data repository of defect calculations is missing that would otherwise be immensely useful
A Simple Example of a Defect Diagram: PbTe

\[\Delta H_{D,q}(E_F, \mu) = [E_{D,q} - E_H] + \sum_i n_i \mu_i + qE_F + E_{corr} \]

- Defect Formation Energy
- Defect Supercell
- Host Supercell
- Chemical potentials from phase stability
- Electron chemical potential
- Finite size corrections

Rocksalt PbTe

Pb-rich and Te-rich

Phase Stability

A. Goyal, P. Gorai, E. Toberer, V. Stevanović, npj Comp. Mat. 42 (2017)
What Should the Defect Data Format Look Like?

Defect Data Format

<table>
<thead>
<tr>
<th>Energy</th>
<th>Type</th>
<th>Site</th>
<th>Charge</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.52</td>
<td>V</td>
<td>Te</td>
<td>2</td>
<td>V_Te_2</td>
</tr>
<tr>
<td>0.86</td>
<td>I</td>
<td>Pb</td>
<td>2</td>
<td>I_Pb_2</td>
</tr>
<tr>
<td>1.05</td>
<td>Pb</td>
<td>Te</td>
<td>1</td>
<td>Pb_Te_1</td>
</tr>
<tr>
<td>1.65</td>
<td>V</td>
<td>Pb</td>
<td>-2</td>
<td>V_Pb_-2</td>
</tr>
<tr>
<td>2.36</td>
<td>Te</td>
<td>Pb</td>
<td>0</td>
<td>Te_Pb_0</td>
</tr>
<tr>
<td>2.77</td>
<td>I</td>
<td>Te</td>
<td>1</td>
<td>I_Te_1</td>
</tr>
</tbody>
</table>

Band gap

Defect Diagram

Pb-rich
What Should the Defect Data Format Look Like?

Defect Diagram

Pb-rich

\[\Delta H, \Delta g \text{ (eV)} \]

0

0.0

0.1

0.2

E\(_F\) (eV)

T\(_{Pb}\)

V\(_{Pb}\)

Pb\(_{Te}\)

I\(_{Pb}\)

V\(_{Te}\)
Examples of More Complicated Defect Diagrams

Defect physics of ZnSiP$_2$

Gorai et al., Energy Environ. Sci. 9, 1031 (2016)

Defect Chemistry in n-type Zintl KGaSb$_4$

Ortiz et al., Chem. Mater. 29, 4523 (2017)

p-type doping in rocksalt ZnO

- Definitely more complicated defect diagrams, but they can be reproduced using the same minimal defect data format. Check out: [Citrine Webpage](https://www.citrine.com/)

Figure 3

- **Point 3**

Figure 4

- **Native defects**
 - V_{Zn}
 - V_{P}
 - V_{Si}
 - P_{Si}
 - Si_{Zn}
 - Zn_{Si}

- **$\Delta H_{D,q}$ (eV)**
 - E_F (eV)

- **ΔE_{acc} (eV)**
 - E_F (eV)

- **ΔE_{don}**

- **Defect formation enthalpies** (e.g., $V_{\text{Ga}(4)}$, V_{K})

- **Examples of More Complicated Defect Diagrams**

Notes:

- The phase diagram (a) shows the Fermi level (E_F) and mid-gap which is shown as a vertical dotted line. The relevant defect states are shallow and appear as shoulders of the band edges.
- There is no evidence of mid-gap states that could trap carriers and detrimentally affect carrier transport.
- The Fermi levels in Regions 1, 2, and 3 (labeled R1, R2, and R3) with different formation enthalpies ($\Delta H_{D,q}$) of 7 different point defects (vacancies and antisites) in all possible charge states ($Zn\text{SiP}_2$, without defects, and $Zn\text{SiP}_2$).
- The Fermi level in the mid-gap region results in intrinsic p-type material until 275 $°C$.
- The Seebeck coefficient behavior (S) and power factor (α) across the temperature range (T) are shown.
- The density of states (DOS) is shown for KGaSb$_4$.
- Representative Rietveld refinement (red) of the KGaSb$_4$ crystal structure is shown for comparison. Rietveld indicates that material is >98% phase pure.

References:

- Gorai et al., Energy Environ. Sci. 9, 1031 (2016)
- Ortiz et al., Chem. Mater. 29, 4523 (2017)
- Citrine Webpage
Looking Ahead: Building a Public Repository

• **Test the parser** for more complicated defect diagrams

• Once parser is ready, **build a public repository** on Citrine for sharing defect diagrams

• Encourage the community to use the **data format for sharing** - example, supplementary data for publication

• Once the repository has a sizable number of materials, use **data informatics tools** on Citrine to tease out trends etc.

Thank you!