A Prototype Finite Difference Model

Timothy H. Kaiser, Ph.D.
tkaiser@mines.edu
Examples at

http://hpc.mines.edu/examples

or enter the commands:

mkdir examples

cd examples

wget http://hpc.mines.edu/examples/examples.tgz

For this session go to the “stommel” directory
A Prototype Model

• We will introduce a finite difference model that will serve to demonstrate what a computational scientist needs to do to take advantage of Distributed Memory computers using MPI

• The model we are using is a two dimensional solution to a model problem for Ocean Circulation, the Stommel Model
The Stommel Problem

- Wind-driven circulation in a homogeneous rectangular ocean under the influence of surface winds, linearized bottom friction, flat bottom and Coriolis force.

- Solution: intense crowding of streamlines towards the western boundary caused by the variation of the Coriolis parameter with latitude.
Governing Equations Model Constants

\[\psi = 0 \]

\[\gamma \left(\frac{\partial 2\psi}{\partial x^2} + \frac{\partial 2\psi}{\partial y^2} \right) + \beta \frac{\partial \psi}{\partial x} = f \]

\[f = -\alpha \sin \left(\frac{\pi y}{2L_y} \right) \]

\[L_x = L_y = 2000 \text{Km} \]

\[\gamma = 3 \times 10^{-6} \]

\[\beta = 2.25 \times 10^{-11} \]

\[\alpha = 10^{-9} \]
The steady state solution
Domain Discretization

Define a grid consisting of points \((x_i, y_j)\) given by

\[
x_i = i\Delta x, i = 0, 1, \ldots, nx+1
\]
\[
y_j = j\Delta y, j = 0, 1, \ldots, ny+1
\]
\[
\Delta x = L_x / (nx + 1)
\]
\[
\Delta y = L_y / (ny + 1)
\]
Seek to find an approximate solution

\[\psi(x_i, y_j) \text{ at points } (x_i, y_j): \]

\[\psi_{i, j} \approx \psi(x_i, y_j) \]
Centered Finite Difference Scheme for the Derivative Operators

\[
\frac{\partial \psi}{\partial x} \approx \frac{\psi_{i+1,j} - \psi_{i-1,j}}{2\Delta x}
\]

\[
\frac{\partial^2 \psi}{\partial x^2} \approx \frac{\psi_{i+1,j} - 2\psi_{i,j} + \psi_{i-1,j}}{(\Delta x)^2}
\]

\[
\frac{\partial^2 \psi}{\partial y^2} \approx \frac{\psi_{i,j+1} - 2\psi_{i,j} + \psi_{i,j-1}}{(\Delta y)^2}
\]
Governing Equation
Finite Difference Form

\[
\psi_{i,j} = a_1 \psi_{i+1,j} + a_2 \psi_{i-1,j} + a_3 \psi_{i,j+1} + a_4 \psi_{i,j-1} - a_5 f_{i,j}
\]

\[
a_1 = \frac{\Delta y^2}{2(\Delta x^2 + \Delta y^2)} + \frac{\beta \Delta x^2 \Delta y^2}{4\gamma \Delta x (\Delta x^2 + \Delta y^2)}
\]

\[
a_2 = \frac{\Delta y^2}{2(\Delta x^2 + \Delta y^2)} - \frac{\beta \Delta x^2 \Delta y^2}{4\gamma \Delta x (\Delta x^2 + \Delta y^2)}
\]

\[
a_3 = \frac{\Delta x^2}{2(\Delta x^2 + \Delta y^2)}
\]

\[
a_4 = \frac{\Delta x^2}{2(\Delta x^2 + \Delta y^2)}
\]

\[
a_5 = \frac{\Delta x^2 \Delta y^2}{2\gamma (\Delta x^2 + \Delta y^2)}
\]
Five-point Stencil Approximation

interior grid points: \(i=1,nx; \ j=1,ny \)

boundary points:
- \((i,0) \ & \ (i,ny+1) ; i=0,nx+1\)
- \((0,j) \ & \ (nx+1,j) ; j=0,ny+1\)

\[
\psi_{i,j} = a_1\psi_{i+1,j} + a_2\psi_{i-1,j} + a_3\psi_{i,j+1} + a_4\psi_{i,j-1} - a_5f_{i,j}
\]

\[
\psi_{i,0} = \psi_{i,ny+1} = 0; \quad \psi_{0,j} = \psi_{nx+1,j} = 0;
\]
Jacobi Iteration

Start with an initial guess for \((\psi_{i,j})\)

Repeat the process

doi = 1, nx; j = 1, ny

\[
(\psi_{i,j})_{\text{new}} = a_1(\psi_{i+1,j}) + a_2(\psi_{i-1,j}) + a_3(\psi_{i,j+1}) + a_4(\psi_{i,j-1}) - a_5 f_{i,j}
\]

end do

\[
(\psi_{i,j}) = (\psi_{i,j})_{\text{new}}
\]
A Prototype Finite Difference Model (Philosophy)
Overview

- Model written in Fortran 90
- Uses many new features of F90
 - Free format
 - Modules instead of commons
 - Module with kind precision facility
 - Interfaces
 - Allocatable arrays
 - Array syntax

http://inside.mines.edu/~tkaiser/fortran/
http://inside.mines.edu/~tkaiser/fortran/new/
Free Format

- Statements can begin in any column

- ! Starts a comment

- To continue a line use a “&” on the line to be continued
Modules instead of commons

- Modules have a name and can be used in place of named commons
- Modules are defined outside of other subroutines
- To “include” the variables from a module in a routine you “use” it
- The main routine stommel and subroutine jacobi share the variables in module “constants”

```fortran
module constants
    real dx,dy,a1,a2,a3,a4,a5,a6
end module

program stommel
    use constants
    ...
end program

subroutine jacobi
    use constants
    ...
end subroutine jacobi
```
Kind precision facility

Instead of declaring variables

```fortran
    real*8 x, y
```

We use

```fortran
    real(b8) x, y
```

Where b8 is a constant defined within a module

```fortran
module numz
    integer, parameter:: b8 = selected_real_kind(14)
end module
program stommel
    use numz
    real(b8) x, y
    x = 1.0_b8
    ...
```
Kind precision facility Why?

Legality
Portability
Reproducibility
Modifiability

Declaring variables “double precision” will give us 16 byte reals on some machines

```
integer, parameter :: b8 = selected_real_kind(14)
real(b8) x, y
x = 1.0_b8
```
Allocatable arrays

- We can declare arrays to be allocatable
- Allows dynamic memory allocation
- Define the size of arrays at run time

```fortran
real(b8), allocatable::psi(:, :) ! our calculation grid
real(b8), allocatable::new_psi(:, :) ! temp storage for the grid

! allocate the grid to size nx * ny plus the boundary cells
allocate(psi(0:nx+1,0:ny+1))
allocate(new_psi(0:nx+1,0:ny+1))
```
Interfaces

- Similar to C prototypes
- Can be part of the routines or put in a module
- Provides information to the compiler for optimization
- Allows type checking

```fortran
module face
  interface bc
    subroutine bc (psi,i1,i2,j1,j2)
      use numz
      real(b8),dimension(i1:i2,j1:j2):: psi
      integer,intent(in):: i1,i2,j1,j2
    end subroutine
  end interface
end module
```

```fortran
program stommel
  use face
  ...
```
Array Syntax

Allows assignments of arrays without do loops

! allocate the grid to size nx * ny plus the boundary cells
allocate(psi(0:nx+1,0:ny+1))
allocate(new_psi(0:nx+1,0:ny+1))

! set initial guess for the value of the grid
psi=1.0_b8

! copy from temp to main grid
psi(i1:i2,j1:j2)=new_psi(i1:i2,j1:j2)
Program Outline (1)

- Module NUMZ - defines the basic real type as 8 bytes
- Module INPUT - contains the inputs
 - nx, ny (Number of cells in the grid)
 - lx, ly (Physical size of the grid)
 - alpha, beta, gamma (Input calculation constants)
 - steps (Number of Jacobi iterations)
- Module Constants - contains the invariants of the calculation
Program Outline (2)

- Module face - contains the interfaces for the subroutines
 - bc - boundary conditions
 - do_jacobi - Jacobi iterations
 - force - right hand side of the differential equation
- Write_grid - writes the grid
Program Outline (3)

- Main Program
- Get the input
- Allocate the grid to size nx * ny plus the boundary cells
- Calculate the constants for the calculations
- Set initial guess for the value of the grid
- Set boundary conditions using
- Do the jacobi iterations
- Write out the final grid
C version considerations

- To simulate the F90 numerical precision facility we:
 - `#define FLT double`
 - And use FLT as our real data type throughout the rest of the program
- We desire flexibility in defining our arrays and matrices
 - Arbitrary starting indices
 - Contiguous blocks of memory for 2d arrays
- Use routines based on *Numerical Recipes in C*
Vector allocation routine

FLT *vector(INT nl, INT nh)
{
 /* creates a vector with bounds vector[nl:nh] */
 FLT *v;
 /* allocate the space */
 v=(FLT *)malloc((unsigned) (nh-nl+1)*sizeof(FLT));
 if (!v) {
 printf("allocation failure in vector()\n");
 exit(1);
 }
 /* return a value offset by nl */
 return v-nl;
}
Matrix allocation routine

FLT **matrix(INT nrl,INT nrh,INT ncl,INT nch)
/* creates a matrix with bounds matrix[nrl:nrh][ncl:nch] */
/* modified from the book version to return contiguous space */
{
 INT i;
 FLT **m;
 /* allocate an array of pointers */
 m=(FLT **) malloc((unsigned) (nrh-nrl+1)*sizeof(FLT*));
 if (!m){
 printf("allocation failure 1 in matrix()\n"); exit(1);}
 m -= nrl; /* offset the array of pointers by nrl */
 for(i=nrl;i<=nrh;i++) {
 if(i == nrl){
 /* allocate a contiguous block of memroy*/
 m[i]=(FLT *) malloc((unsigned) (nrh-nrl+1)*(nch-ncl+1)*sizeof(FLT));
 if (!m[i]){}
 printf("allocation failure 2 in matrix()\n");exit(1); }
 m[i] -= ncl; /* first pointer points to beginning of the block */
 }
 else {
 m[i]=m[i-1]+(nch-ncl+1); /* rest of pointers are offset by stride */
 }
 return m;
}
Digression... a 3d Volume allocation routine

Same idea but we allocate an array of slices

```c
FLT **cube(INT nslice1, INT nslice2, INT nrow1, INT nrow2, INT ncol1, INT ncol2) {
    FLT **slice(INT nrow1, INT nrow2, INT ncol1, INT ncol2, FLT **temp);
    FLT *temp, ***mcube;
    INT i;
    mcube = (FLT ***) malloc((unsigned) (nslice2-nslice1+1)*sizeof(FLT*));
    if (!mcube) {
        printf("allocation failure at 1 in cube()\n");
        return NULL;
    }
    mcube -= nslice1;
    temp = (FLT*) malloc((unsigned) (nslice2-nslice1+1) * 
                         (nrow2-nrow1+1) * 
                         (ncol2-ncol1+1)*sizeof(FLT));
    if (*temp) {
        printf("allocation failure at 2 in cube()\n");
        return NULL;
    }
    for (i = nslice1; i <= nslice2; i++) {
        mcube[i] = slice(nrow1, nrow2, ncol1, ncol2, &temp);
        if (!mcube[i]) return NULL;
        temp += (nrow2-nrow1+1)*(ncol2-ncol1+1);
    }
    return mcube;
}
```
Our slice allocation routine

```c
FLT **slice(INT nrow1, INT nrow2, INT ncol1, INT ncol2, FLT **temp) {
    INT i;
    FLT **mslice;
    mslice=(FLT **) malloc((unsigned) (nrow2-nrow1+1)*sizeof(FLT*));
    if (!mslice) {
        printf("allocation failure at 3 in slice()\n");
        return NULL;
    }
    mslice -= nrow1;
    for(i=nrow1;i<=nrow2;i++) {
        if (i == nrow1) {
            mslice[i]=*temp;
            mslice[i] -= ncol1;
        } else {
            mslice[i]=mslice[i-1]+(ncol2-ncol1+1);
        }
    }
    return mslice;
}
```

Digression... a 3d version of this routine