Fluid and rock bulk viscosity and modulus
Azar K. Hasanov¹, Michael L. Batzle¹,², and Manika Prasad³

Abstract
Bulk viscosity is rarely measured in the laboratory and is often poorly defined in the literature. We show that bulk viscosity can be a dominant factor in acoustic dispersion and attenuation of rocks containing a highly viscous fluid. A common method to measure attenuation and dispersion of seismic waves in the laboratory is the stress-strain method. We present bulk modulus attenuation and dispersion data collected on two heavy-oil-saturated rock samples by oscillating confining pressure method. Data was acquired at 0.001–1 Hz frequencies and compared to previous quasistatic axial stress-strain measurements. We demonstrate that bulk losses are significant even at these ultralow frequencies.

Introduction
The bulk modulus of any pore fluid must be used to interpret the seismic response and perform a fluid substitution for direct hydrocarbon indicator analysis. However, fluids will have losses and show dispersion as a result of the viscoelastic behavior of the bulk modulus. This behavior can be described through the bulk viscosity. Bulk viscosity is distinct from the shear viscosity, but the controlling molecular motions are probably similar. In contrast to shear viscosity, bulk viscosity is rarely measured and is often poorly defined, yet it may be the dominant factor in acoustic dispersion. Attenuation and dispersion in the fluid will be observed, then, in any rock containing any highly viscous fluid, particularly heavy oils.

In greater scope, stress-strain low-frequency rock measurements (Spencer, 1981; Batzle et al., 2006) can have substantial errors when applied to velocities because of inaccuracies in Poisson’s ratio. Direct low-frequency bulk-modulus measurements provide an additional measurement to calibrate the derived shear and bulk moduli from a Young’s modulus experiment.

Any material that is exposed to a change in stress will undergo a strain. If the material is purely elastic, the strains will be completely linear and in phase with the applied stress. If the material is purely viscous (and Newtonian), then the strain rate is proportional to the stress but 90 degrees out of phase. Many of the fluids and rocks we deal with are a mixture of these two end cases. In other words, they are anelastic or viscoelastic. To some extent, these materials have “memory,” and deformation will lag stress. This translates into a frequency dependence.

Shear viscosity in fluids is well known and has been studied in detail. Briefly, as a shear stress is applied, the fluid begins to deform or flow. This deformation will continue as long as the shear stress is applied. A similar concept could be applied to a bulk deformation resulting from an applied hydrostatic stress. In the viscoelastic case, there will be a phase lag between the hydrostatic pressure sine wave and the strain sine wave (Figure 1). This bulk viscous relaxation should be in addition to the more obvious shear relaxation. In the case of wave velocities, the frequency dispersion of shear wave (V_s) can be modeled by the viscoelastic effects due to shear viscosity. However, both the bulk modulus as well as the shear modulus are seen to have a frequency dependence (see, e.g., Batzle et al., 2006; Hofmann, 2006; Adam et al., 2009). Thus, simply matching the shear behavior will not completely explain the observed changes in compressional velocity (V_p).

In Figure 2, we present a generalized model of V_s and V_p frequency dependence. Modification of the predicted response only with the shear modulus will not fully explain the changes in V_p.

¹Department of Geophysics, Colorado School of Mines.
²Deceased on 9 January 2015.
³Department of Petroleum Engineering, Colorado School of Mines.

http://dx.doi.org/10.1190/tle35060502.1.
Hence, shear viscosity cannot be the sole affecting parameter. For example, Prasad and Meissner (1992) found that saturated sediments, consisting of rounded sand grains, are characterized by stronger bulk losses as compared to silt-sized quartz particles.

We conducted experiments to measure bulk modulus and attenuation of two heavy-oil-saturated rock samples by confining pressure cycling method under varying oscillation frequencies (within teleseismic frequency band 0.001–1 Hz) and compared these measurements to a more conventional axial stress-strain technique. We plan to extend the frequency range of the pressure cycling apparatus and modify the setup to measure frequency-dependent bulk viscosities of viscoelastic fluids.

The experiment

For our experiments, we adapted the laboratory setup developed by Hasanov (2014). The experimental apparatus, depicted in Figure 3a, consists of a pressure vessel, two pressure pumps, a function generator, three pressure transducers, strain-gauge preconditioning modules, differential amplifiers, a digitizing unit, and a personal computer. In a typical experiment, a jacketed sample, instrumented with strain gauges (Figure 3b), is mounted to the pressure vessel head and placed inside the pressure vessel, which is filled with hydraulic oil. Our pressure vessel can sustain confining pressures up to 69 MPa. A pressure transducer is placed at the bottom of the pressure vessel to record confining pressure. A function generator supplies analog voltage input directly into the syringe pump, which serves as the source of confining pressure. This allows the pump to generate pore-pressure oscillations, amplitude, frequency, and DC offset, all of which can be controlled with the function generator. Electrical voltage signals, generated by strain gauges during a sample’s deformation, are filtered, amplified by the strain-gauge preconditioning module, then digitized by the data-acquisition card. The setup’s upper oscillation frequency limit is currently 1 Hz due to mechanical friction within the syringe pump.

Once the samples are subjected to sinusoidally varying confining pressure, we record the resulting volumetric strain, which lags behind the pressure signal by a phase angle \(\theta \), which is representative of material’s intrinsic attenuation. As with the axial stress-strain “low-frequency” setup (Spencer’s apparatus, Spencer, 1981; Batzle et al., 2006), we utilize an aluminum sample as a calibration standard, both for bulk modulus and phase-lag calculations.

Results and discussion

In the past, we have concentrated on the influence of “viscosity” (\(\eta \)) on wave velocity (Han et al., 2009). However, materials have both a shear viscosity (\(\eta_s \)) and a bulk viscosity (\(\eta_b \)). The Navier-Stokes equation through a lossy medium includes a viscosity term:

\[
\rho \left(\frac{\partial u}{\partial t} + u \cdot \nabla u \right) = -\nabla P + \eta \nabla^2 u ,
\]

where \(\rho \) is density, \(t \) is time, and \(u \) is displacement. The more general equation incorporates both bulk and shear viscosities (Dukhin and Goetz, 2009):

\[
\rho \left(\frac{\partial u}{\partial t} + u \cdot \nabla u \right) = -\nabla P + \eta_s \nabla^2 u + \left(\frac{4}{3} \eta_s + \eta_b \right) \nabla \cdot u .
\]

The acoustic relaxation times, \(\tau \), for these materials is given by:

\[
\tau = \frac{1}{\rho \eta_s} \left(\frac{4}{3} \eta_s + \eta_b \right).
\]

As an example, if we set \(\eta_s \) approximately equal to \(\eta_b \), for water with a viscosity of 0.001 Pa·s (1 cP), the relaxation time is about \(10^{-13} \) seconds. Thus, \(\tau \) is directly proportional to the viscosity, which can change by many orders of magnitude. A very heavy oil

Figure 3. Pressure-cycling apparatus and a sample used in the study. (a) Experimental setup used for pressure-cycling measurements (after Hasanov, 2014). (b) Heavy-oil-saturated OB8 rock sample, instrumented with a pair of strain gauges and encased in a flexible epoxy mold.
at its glass point has a viscosity of 10^{12} Pa·s. This glassy oil would have a relaxation time of about 10^7 seconds, which is well within the seismic or logging frequency bands. This results in an attenuation coefficient for compressional waves, α_p, of:

$$\alpha_p = \frac{\omega}{\rho V_0^2} \left(\frac{4}{3} \eta_s + \eta_b \right).$$

Here, we assume the material to be thermally nonconductive to avoid the isothermal-adiabatic contributions. Dynamic measurements, including ultrasonic wave propagation, are adiabatic, whereas “static” measurements are generally isothermal.

We could attempt to measure α_p through acoustic spectroscopy, as suggested by Dukhin and Goetz (2009). We measured such a spectrum on heavy oil as a function of frequency and temperature shown in Figure 4. The peaks observed represent different vibrational modes. This technique would work well with simple solid materials but is much more difficult with fluids with complex chemistry. A container must be used, and its influence would need to be subtracted from a measured spectrum. In addition, the frequency band is actually fairly narrow (Zadler et al., 2004).

The results obtained with our setup on two rock samples containing heavy oils at low frequencies are shown in Figure 5. We can compare these results to our previous measurements as shown in Figure 6. The data above 1 Hz (log frequency = 0) were collected with the quasistatic low-frequency system (Spencer, 1981; Batzle et al., 2006). The data below 1 Hz were collected in a separate pressure-cycling system. In magnitude and frequency-dependence trend, the data from the two systems compares well.

Attenuation can also be measured from these data:

$$\frac{1}{Q} = \tan \theta,$$

where θ is the phase lag between the pressure oscillations and strain oscillations. The measured θ is shown in Figure 7 for the Uvalde and OB8 rock samples containing heavy oil.

An alternative approach to calculating attenuation is to compare the total energy in the deforming system (E) to the energy lost in a cycle (ΔE) (Saxena et al., 1988; Scott-Emuakpor et al., 2010):

$$\frac{1}{Q} = \frac{\Delta E}{2\pi E}.$$

Energy is calculated from the areas of a stress-strain plot as shown in Figure 8. From this plot for the OB8 sample at 1 mHz, a value for $1/Q$ of 0.04 is derived ($Q = 25$). This value is larger than the value of $1/Q = 0.021$ extracted from the phase lag. The discrepancy is likely due to the variability in individual hysteresis loop areas and the assumption of linearity. In most cases, the “loop” calculated loss ($1/Q_L$) is smaller than the value derived from phase angles. This comparison is shown in Figure 9.

O’Connell and Budiansky (1978) point out that average energy (E_{ave}), rather than total energy (E), should be used to calculate $1/Q$. Since E_{ave} is roughly half the value of E, this would effectively double the loop phase angles in Figure 9. We expect the phase-angle-derived values to be more accurate due to the more extensive averaging involved.
Conclusions

Compressional deformation in fluids and rocks will be influenced by similar viscoelastic effects as in the shear case. Although a considerable amount of data is available for shear viscosity and the associated changes in shear modulus, little is understood about either bulk viscosity or its influence. Fortunately, the measurements can be made in the laboratory using a variety of techniques. Dispersion and losses due to these viscoelastic components of the bulk modulus can be significant. Future work will include optimizing the measurements (amplitude, frequency range, error reduction) and testing specific cases. We also plan to expand the frequency range of our system and develop a bulk viscosity measurement protocol by pore-pressure cycling of viscoelastic fluids through a capillary of known permeability.

Acknowledgments

This work was sponsored by the Fluids/DHI Consortium at Colorado School of Mines and University of Houston. Bob Kranz was instrumental at initial stages of setup building. We thank Ronny Hofmann for reviewing the manuscript. Mike Batzle passed away by the time of manuscript submission. He is missed dearly by his students and colleagues.

Corresponding author: ahasanov@mines.edu

References

